Land & Environment

Tectonics Matter: USU Geoscientists Probe Geochemistry, Microbial Diversity of Peruvian Hot Springs

Recent graduate student Heather Upin and faculty mentor Dennis Newell publish in 'Communications Earth & Environment.'

By Mary-Ann Muffoletto |

USU Geosciences alumna Heather Upin MS'20 collects a microbial sample from Aguas Calientas Pinaya in Peru’s southern Andes. She and faculty mentor Dennis Newell published findings about microbial diversity in Peruvian hot springs. (Photo: USU/Dennis Newell)

South America’s Andes Mountains, the world’s longest mountain range and home to some of the planet’s highest peaks, feature thousands of hot springs. Driven by plate tectonics and fueled by hot rock and fluids, these thermal discharges vary widely in geochemistry and microbial diversity.

Utah State University geoscientists, along with colleagues from Montana State University, examined 14 hot springs within the southern Andes in Peru and discovered microbial community composition is distinctly different in two tectonic settings. Dennis Newell, associate professor in USU’s Department of Geosciences, and recent USU graduate Heather Upin, MS 2020, report findings in the April 11 online issue of Nature’s Communications Earth & Environment. Their research is supported by the National Science Foundation and the Geological Society of America.

“We know tectonic processes control hot spring temperature and geochemistry, yet how this, in turn, shapes microbial community composition is poorly understood,” says Newell, USU Geosciences graduate director.

The scientists collected geochemical and 16S ribosomal RNA gene sequencing data from hot springs in regions with contrasting styles of subduction — flat-slab and back-arc — and noted similarities in pH but found differences in geochemistry and microbiology.

“Flat-slab hot springs were chemically heterogeneous, had modest surface temperatures and were dominated by members of the metabolically diverse phylum Proteobacteria,” Newell says.

In contrast, the back-arc hot springs were more geochemically homogenous, had hotter water, exhibited high concentrations of dissolved metals and gases, and were home to heat-loving archaeal and bacterial organisms.

“These results tell us tectonics matter when it comes microbial community make-up, but little research has been conducted around the world to demonstrate this,” Newell says.

Further investigation, with efficient genomic research, at sites around the globe could reveal how microbes have evolved in tectonically diverse environments, he says.

USU geochemist Dennis Newell, associate professor and graduate director in the Department of Geosciences, collects a gas sample from Baños Termales de Santo Tomás, hot springs on the banks of Peru's Pachachaca River. (Photo: USU/Heather Upin)

WRITER

Mary-Ann Muffoletto
Public Relations Specialist
College of Science
435-797-3517
maryann.muffoletto@usu.edu

CONTACT

Dennis Newell
Graduate Director and Associate Professor
Department of Geosciences
(435) 797-0479
dennis.newell@usu.edu


TOPICS

Research 868stories Geosciences 73stories

Comments and questions regarding this article may be directed to the contact person listed on this page.

Next Story in Land & Environment

See Also